14 C
Johannesburg
March 15, 2025
Mining Africa News
Featured Featured Mining

How fault lines in a kitchen sink are changing what we know about geology – Phys.org


Forget Password?
Learn more
share this!
335
35
Share
Email
February 3, 2022
by
In a new paper recently published in the journal Geology, researchers at the University of Massachusetts Amherst unveiled a physical model that yields an unprecedented, high-resolution look at the slip rates of faults, which determine the likelihood of earthquakes.

googletag.cmd.push(function() { googletag.display(‘div-gpt-ad-1449240174198-2’); });

When most of us picture a fault line, we imagine a giant crack in the earth where two tectonic plates smash into each other. When geologists think of faults, however, they see a branching system made up of thousands of individual faults. “The closer you look,” says Michele Cooke, one of the paper’s co-authors and a professor of geosciences at UMass Amherst, “the more you find, and when you look in detail, the picture gets very complicated.”
Such complexity makes it difficult to accurately understand what is happening at any given place in the system—let alone to predict when an earthquake will occur, and where. To blur the picture even more, the vast majority of individual faults are buried under feet of dirt or obscured by vegetation, and so can’t be directly observed. Finally, fault systems evolve over the course of thousands, tens of thousands, or even millions of years. Therefore, geologists have traditionally generated generalized slip rates for entire fault systems and theorized broadly about how fault systems evolve.
In a new study, the authors used a physical model, “about the size of a kitchen sink,” says Hanna Elston, the paper’s lead author and a graduate student in geosciences at UMass Amherst, and filled it with a carefully composed kaolin clay, “about the consistency of Greek yogurt,” that behaves much like the earth’s crust. At the bottom of the model are two plates that can be precisely moved. Elston and her co-authors then carefully cut the clay, to form a fault, and, over the course of four hours, which simulated a million years, moved the plates 12 centimeters, all the while taking pictures with an array of overhead cameras, which they could then analyze to uncover the slip rates and mechanics of their modeled faults.
The precision of the first-of-its-kind technique that Elston and her co-authors developed allows them to track slip rates at specific locations along faults, with an unprecedented fidelity, which can then provide a record that researchers can directly compare to field studies to estimate the slip rate at any particular point along a fault.
Not only does the model perform in ways that mirror real-life faults, it allowed Elston and her colleagues, including Cooke and Alex Hatem, now at the U.S. Geological Survey, to observe two different phenomena that no one else has seen before. First, the model shows that slip rates can change at a particular site on the fault as that fault evolves. Second, the team showed that slip rates are interactive: the rate can change at many different points along one fault in response to changing slip rates at other, nearby faults.
“This study gives us the finest-grained picture yet into how faults evolve, which could be used to help the assessments of seismic hazards,” says Elston—and it’s only the start. The research in this paper, which was supported by the National Science Foundation, represents a proof-of-concept for the team’s analytical techniques. Future will detail make 3D reconstructions of different faults’ evolution.
A video overview of the team’s model is available from YouTube:
Explore further
Facebook
Twitter
Email
Feedback to editors
9 hours ago
0
9 hours ago
0
9 hours ago
0
Jun 07, 2022
0
Jun 07, 2022
0
2 hours ago
2 hours ago
3 hours ago
3 hours ago
3 hours ago
4 hours ago
4 hours ago
29 minutes ago
32 minutes ago
42 minutes ago
44 minutes ago
52 minutes ago
54 minutes ago
More from Physics Forums | Science Articles, Homework Help, Discussion
Dec 07, 2021
Dec 14, 2021
Dec 21, 2021
Jan 25, 2022
Dec 17, 2021
Jul 06, 2017
8 hours ago
7 hours ago
10 hours ago
Jun 07, 2022
Jun 07, 2022
Jun 07, 2022
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.

source

Related posts

Hillenbrand remains on top as recount proved Mineral County's new voting equipment worked – WV News

Mike

How the next 'supercontinent' will form – BBC

Mike

Offshore Falklands Sea Lion partners working on reduced capex concept | Offshore – Offshore magazine

Mike

Leave a Comment